Linear Conditions Imposed on Flag Varieties

نویسنده

  • JULIANNA S. TYMOCZKO
چکیده

We study subvarieties of the flag variety called Hessenberg varieties, defined by certain linear conditions. These subvarieties arise naturally in applications including geometric representation theory, number theory, and numerical analysis. We describe completely the homology of Hessenberg varieties over GLn(C) and show that they have no odd-dimensional homology. We provide an explicit geometric construction which partitions each Hessenberg variety into pieces homeomorphic to affine space. We characterize these affine pieces by fillings of Young tableaux and show that the dimension of the affine piece can be computed by combinatorial rules generalizing the Eulerian numbers. We give an equivalent formulation of this result in terms of roots. We conclude with a section on open questions.Linear conditions imposed on flag varieties

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Imposing Linear Conditions on Flag Varieties

Abstract. We study subvarieties of the flag variety defined by certain linear conditions. These subvarieties are called Hessenberg varieties and arise naturally in applications including geometric representation theory, number theory, and numerical analysis. We describe completely the homology of Hessenberg varieties over GLn(C) and show that they have no odd-dimensional homology. We provide an...

متن کامل

Restriction Varieties and Geometric Branching Rules

This paper develops a new method for studying the cohomology of orthogonal flag varieties. Restriction varieties are subvarieties of orthogonal flag varieties defined by rank conditions with respect to (not necessarily isotropic) flags. They interpolate between Schubert varieties in orthogonal flag varieties and the restrictions of general Schubert varieties in ordinary flag varieties. We give ...

متن کامل

Lectures on the geometry of flag varieties

In these notes, we present some fundamental results concerning flag varieties and their Schubert varieties. By a flag variety, we mean a complex projective algebraic variety X, homogeneous under a complex linear algebraic group. The orbits of a Borel subgroup form a stratification of X into Schubert cells. These are isomorphic to affine spaces; their closures in X are the Schubert varieties, ge...

متن کامل

Quiver Flag Varieties and Multigraded Linear Series

This paper introduces a class of smooth projective varieties that generalise and share many properties with partial flag varieties of type A. The quiver flag variety Mθ(Q, r) of a finite acyclic quiver Q (with a unique source) and a dimension vector r is a fine moduli space of stable representations of Q. Quiver flag varieties are Mori Dream Spaces, they are obtained via a tower of Grassmann bu...

متن کامل

The Quantum Cohomology of Flag Varieties and the Periodicity of the Schubert Structure Constants

We give conditions on a curve class that guarantee the vanishing of the structure constants of the small quantum cohomology of partial flag varieties F (k1, . . . , kr; n) for that class. We show that many of the structure constants of the quantum cohomology of flag varieties can be computed from the image of the evaluation morphism. In fact, we show that a certain class of these structure cons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006